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Mobility data

e Location data from mobile
phones is used for:
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= Epidemic modelling

= Urban planning

= Natural Disaster response

= Augmenting offical
statistics
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Effect of lockdown on mobility in the UK.

= Much more...

From: Gibbs et. al. (2021).


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009162

Decentralized mobility data

e Major changes are coming to
systems for generating mobility
data. .

= Previously: Individual-level
mobility data was stored in a
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single database.
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= Increasingly: Mobility data are
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encrypted and backed up to Google
servers over Wi-Fi when your device is

device that collected them.

backup won't affect your account
storage limits. Learn more

2D Vhirra in rantral

Scroll to choose Vv




Privacy risks

e Unique mobility patterns, “linking” with spatial context
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Data from hookup and dating apps is just one corner of
a multibillion-dollar ecosystem of private information
bought and sold without our permission.

Sources (clockwise from top-left): Vice, New York Times, Vox, ACLU, Vice, New York Times.


https://www.vice.com/en/article/m7vzjb/location-data-abortion-clinics-safegraph-planned-parenthood
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.vox.com/recode/2020/7/8/21311533/sdks-tracking-data-location
https://www.aclu.org/news/privacy-technology/catholic-group-buying-data-to-out-gay-priests
https://www.vice.com/en/article/jgqm5x/us-military-location-data-xmode-locate-x
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html

Current privacy models

e We focus on: origin-
destination (OD) networks.

e Two common approaches to
privacy in OD networks:
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= K-anonymity (low count
suppression).

» Differential privacy (DP) 0D network with differential privacy.
(calibrated noise defined From: Bassolas et. al. (2019).
by a privacy budget €).


https://www.nature.com/articles/s41467-019-12809-y

Decentralized privacy

e Current privacy models Sorver
require centralized
collection of location data. ) o)
Server Deyices apply calibrated
e Alternative: Federation with | ©ouests data ey with the somer
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Methods

e Simulate a decentralized location dataset
e Apply privacy with three different models
= k-anonymity, Central DP, LDP.

e Quantify impact on data accuracy of:

= Privacy model
» Privacy model parameters

= Units of spatial / temporal aggregation



Methods
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e Simulated individual mobility reproduces collective
dynamics from empirical data.



Results
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® “Compounding” noise required for LDP introduces high error for low frequency edges.

Privacy parameters: a) k=10, b) €=1, s=10, c) m=2340, k=205, €=5, s=10.



Results

® Most connections have error >10% in an LDP network. a) Original data, b) Central DP

network, c) LDP network.

® But, there are many “levers” to improve data accuracy.



Results
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® One ‘lever’: changing algorithm-specific privacy parameters.



Results
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® Another ‘lever’: choosing units of spatial/temporal aggregation.



Conclusions

e Simulating individual-level mobility data allows full
transparency into effect of privacy choices.

e There are many opportunities to improve data accuracy.

e Decentralized data with LDP could allow continued use of
mobility data.

= Also: new opportunities for understanding human
behavior (on-device data linkage, complex analytics).
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